Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Aerosol Science ; : 105905, 2021.
Article in English | ScienceDirect | ID: covidwho-1517312

ABSTRACT

We evaluate the outward and inward protection efficiencies of different mask types (N95, surgical and two cloth mask designs) taking into account the imperfect fit on the wearer. To this end, we built a manikin to simulate exhaling, coughing and inhaling of aerosol droplets 0.3–5.0μm in diameters. The protection efficiencies depend on many factors, including the droplet size, the mask fit and the presence of a filter layer. Here, we show that cloth and surgical masks with a non-woven filter layer can achieve a combined outward and inward protection efficiencies between 50% and 90%. Removing the filter layer greatly reduces the protection efficiency to below 20% for the smallest droplet size. While a well-fitted N95 masks offer protection efficiency close to 100%, a poorly fitted N95 mask with gaps offers less protection than a well-fitted surgical/cloth mask with filter layer. We also found that double masking—the wearing of cloth mask on top of a surgical mask—offers little to no additional protection as compared to a single cloth/surgical mask. The results of our work can inform the implementation of mask mandates to minimize airborne transmissions of coronavirus disease of 2019 (COVID-19).

2.
Indoor Air ; 31(5): 1639-1644, 2021 09.
Article in English | MEDLINE | ID: covidwho-1194130

ABSTRACT

Facing shortages of personal protective equipment, some clinicians have advocated the use of barrier enclosures (typically mounted over the head, with and without suction) to contain aerosol emissions from coronavirus disease 2019 (COVID-19) patients. There is, however, little evidence for its usefulness. To test the effectiveness of such a device, we built a manikin that can expire micron-sized aerosols at flow rates close to physiological conditions. We then placed the manikin inside the enclosure and used a laser sheet to visualize the aerosol leaking out. We show that with sufficient suction, it is possible to effectively contain aerosol from the manikin, reducing aerosol exposure outside the enclosure by 99%. In contrast, a passive barrier without suction only reduces aerosol exposure by 60%.


Subject(s)
Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Infection Control/methods , Humans , Models, Anatomic , SARS-CoV-2 , Suction/methods
SELECTION OF CITATIONS
SEARCH DETAIL